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♦1 Introduction
To become a lumberjack requires that one is a master of logs. Indeed, that is why you are here today. The
logarithm is a very important operation. With its definition, problem solvers and mathematicians are able
to deal with exponents in very nice ways. Namely, it becomes easy to remove the exponent of both sides
of an equation, which could be a very helpful step to speed up your algebra and manipulate equalities and
inequalities.

♦2 Theory
 Definition (Logarithms). Let n, k,m ∈ R such that nk = m We definition the logarithm base-n of m
as

logn m = k

In english, the logarithm logn m asks "n to what power is m?" In this case, that is k, so we write logn m = k.
The subscripted number is called the "base." If not base is written, base-10 is assumed.

 Definition (Natural Logarithm). The natural logarithm is a logarithm in taken in base-e. Instead of
writing loge x, one may write lnx.

 Example 1.

• log3 9 = 2 because 32 = 9. Try to come up with five other examples of simple logarithms like
this.

• log 100 = 2 because 102 = 100. In this example, the base is omitted, so we assume base-10.

• log8 2 = 1
3 because 8

1
3 = 3

√
8 = 2. If this example isn't clear, go back to exponent properties

• ln e = 1 because e1 = e. Indeed, logn n = 1 for any n

♦3 Main Lines
Each of the following theorems can be proven very quickly using other properties. In fact, I would encour-
age you to try them out yourself once you understand the proofs provided. The proofs involving other
log properties don't provide much intuition into any exponential origin. For concreteness and clarity, I will
show direct proofs from exponent properties, since logarithm properties are practical extensions of these facts.

Theorem: Unofficial Fundamental Property of Logarithms 

nlogn m = m

1
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Proof. Unofficial Fundamental Property of LogarithmsRecall that logn m denotes the power of n that is equal
to m. Specifically, if we let logn m = x, then nx = m by the very definition of the logarithm. Therefore,

nlogn m = m

This is by far the most common logarithm property used in problem solving. Through this result, a bridge
is built from logarithms to exponents, providing the main intuition as to what exactly a logarithm means.
Study this closely, for the rest of this handout relies on your full understanding of this idea.

 Problem (Example). Let a, b, c, d ∈ N. What is the value of
aloga b+loga c+loga d

if a, b, c, d are the first four prime numbers respectively?

 Solution. We could solve for log2 3, log2 5, and log2 7, but it is way easier to reduce our work as
follows:

aloga b+loga c+loga d = aloga b · aloga c · aloga d = bcd = 105

By interpreting the logarithms in their exponential meanings, we can dramatically reduce the amount of
work we have to do to solve the problem.

Theorem: Property of Logarithms 

Let a, b, c ∈ R. Then, we have
loga b+ loga c = loga bc

Proof. Let x = loga b and y = loga c. Notice that ax = b and that ay = c. So,

bc = axby = ax+y

Taking the logarithm base-a of both sides, we get
loga bc = loga ax+y

Now, what power do we raise a to get ax+y? That's just x+ y so we have that
loga bc = x+ y = loga b+ loga c

As desired.
Here, we have a great tool to split apart factors inside of a logarithm and bind together same-base

logarithms through addition. For instance, log2(2x) = log2 2 + log2 x = 1 + log2 x. While solving problems,
this property is leveraged to reduce equations and force nice cancellations.. Consider the following problem
as an example:

 Problem (2003 AMC 12B Problem 17). If log(xy3) = 1 and log(x2y) = 1, what is log(xy)?
Let's add the two equations to get

log(xy3) + log(x2y) = 2 =⇒ log(x3y4) = 2

We can quickly see that adding log(x2y) = 1 once more gives us what we are looking for! Namely,
log(x3y4) + log(x2y) = 3 =⇒ log((xy)5) = 3 =⇒ 103 = (xy)5

Taking the fifth root on both sides reveals that xy = 10
3
5 . After taking logs base-10 on both sides, we see

that
log(xy) = log(10 3

5 ) =
3

5
.

If you return to this problem after reading property #4, you'll notice a quicker exit door to this problem:

log((xy)5) = 5 log(xy) = 3 =⇒ log(xy) = 3

5
.
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Theorem: Property of Logarithms 

Suppose that a, b, n ∈ R. Then,
loga bn = n loga b

Proof. Let x = loga b and y = loga bn. Notice that ax = b and that ay = bn. It follows that

axn = ay.

Taking logs base-a on both sides gives
xn = y which is equivalent to n loga b = loga bn

Indirectly, this property is just restating the fact that raising a number of the form nm to the power of
k -- for instance -- is the same as raising n to the power of mk (for some n,m, k). Consider the following
problem asking about exercising this tech:

 Problem (New Tech Demo). A poor kitty, denoted k (which is also a member of R for some reason),
is stuck in a tree:

tree = tt
tk

How can you safely get the kitty to ground level if ``ground level'' is definitiond by the aspect of not being
in the power of another number (such as t in this case) or being raised to any power? (This is by no means
rigorous, it is a mere exercise of a logarithm property)

 Solution. Poor kitty, fear not, the lumberjack is here! I will take logs from this tree (sorry) until
you are safe. Allow me to pull out my handy tool, f(x) = logttt x. After one quick application of my tool,

f(tree) = logttt (tree) = logttt t
tt

k

= k

Now, the kitty is safe on the ground level.

Theorem: Property of Logarithms 

Let a, b, c ∈ R. Then, we have

loga b− loga c = loga

b

c



Proof. Property of LogarithmsAgain, definition x = loga b and y = loga c. Since, ax = b and ay = c,it follows
that

b

c
=

ax

ay
= ax−y

Now, taking logs base-a on both sides yields

loga

b

c


= loga ax−y = x− y = loga b− loga c

as desired.
This result is very similar to the addition of logarithms property. Instead, you have a method to handle
subtraction. This property is very versatile because you can break apart single logarithms into divisions and
then split them apart. For instance, it is logical to say ln(3) = ln


27
9


= ln(27)− ln(9). Going backwards, it

many pose equally helpful or useful to say that ln(27)− ln(9) = ln

27
9


= ln(3).

 Problem (MAθ 1992). If log 36 = a and log 125 = b, express log(1/12) in terms of a and b.
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 Solution. Notice that
log 1

12
= log 1

2
+ log 1

6
= (log 1− log 2) + (log 1− log 6) = − log 2− log 6

The first logarithm can be rewritten as log 2 = log 10
5 = log 10− log 5 = 1− log 5. Now, since a = log 36 and

36 = 62, we have that log 36 = log 62 = 2 log 6 so a
2 = log6. Similarly, log 125 = log 53 = 3 log 5 = b, so

b
3 = log 5. Plugging everything in, we get that

log(1/12) = −(1− log 5)− log 6 =
a

2
+

b

3
− 1

 Solution (Alternate). I can use a different tool: f(x) = logt x and get the kitty down with

f(f(f(tree))) = f(f(tt
k

)) = f(tk) = k

In general, this property allows you to extract powers from the argument and get them as constants. Like-
wise, you can always take a coefficient of a logarithmic term such as z logx y and place the coefficient inside
the logarithm with logx yz.

Theorem: Property of Logarithms 

Suppose that a, b, c ∈ R. Then,
(loga b)(logb c) = loga c

Proof. Property of LogarithmsLet x = loga c and consider the fact that c = ax. Taking logs base-b on both
sides gives

logb c = logb ax

Now, let y = logb a and z = logb ax. Since byx = bz, we have that

yx = z so (logb a)(loga c) = logb ax.

Since logb ax = logb c we have that
(loga b)(logb c) = loga c.

The chain rule of logarithms is also very related to the change of base property. Specifically, dividing by the
term with the same base as the other side derives the change of base property instantly. To see when to use
this property, keep an eye on products of logarithms where the base of one logarithm is in the argument of
another. For instance, consider the following problem:

 Problem (Original). Assume n ∈ N such that n > 2. Evaluate the product
n

i=2

n

j=2

logi j

Solution Notice that for any p, q such that 2  p, q  n, logp q and logq p appear exactly once in the
product. Since logp q · logq p = logp p = 1, it is possible to arrange the product such that each logarithm is
multiplied with a logarithm with swapped bases and arguments. Therefore, the product is 1 .

Theorem: Property of Logarithms 

Suppose that a, b, n ∈ R. Then,
logan bn = loga b
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Proof. Property of LogarithmsLet x = loga b. It is sufficient to show that axn = bn. Since ax = b, we are
done.

In solving problems involving logs, spotting powers in the base and argument can be a sign to leverage
this property. An example of a use-case for this property can be seen in the 2021 AMC12A on problem 14.

 Problem (AMC12 2021A). What is the value of
20

k=1

log5k 3k
2


·


100

k=1

log9k 25k

?

 Solution. We can notice the fact that both the base and argument of both logarithms are raised
to the power of some power of k. Since logan bn = loga b for a, b, n ∈ R, we can see that

log5k 3k
2

= log5k 3k·k = k log5k 3k = k log5 3.

Now, we can rewrite the first factor as

log5 3
20

k=1

k

Recall that
n

i=1 = n(n+1)
2 , so the first factor reduces further:

log5 3
20

k=1

k = log5 3

20(21)

2


= 210 log5 3.

The logarithm inside of the second term immediately loses the k in the argument and base by the same
property. Therefore,

log9k 25k = log9 25.

We aren't done! Notice that
log9 25 = log32 52 = log3 5

So, the second term transforms as follows:
100

k=1

log9k 25k =

100

k=1

log3 5 = 100 log3 5.

Putting it all together, we have
20

k=1

log5k 3k
2


·


100

k=1

log9k 25k


= (210 log5 3)(100 log3 5) = 21000(log5 3 · log3 5).

Finally, since (loga b)(logb c) = loga c for a, b, c ∈ R+, it follows that log5 3 · log3 5 = log5 5 = 1. Our final
answer is thus 21000(log5 3 · log3 5) = 21000 · 1 = 21000 .

Theorem: Property of Logarithms 

Suppose that a, b, c, d ∈ R. Then,
(loga b) (logc d) = (loga d) (logc b)

Proof. Property of LogarithmsWe let x = loga b, y = logc d, w = loga d, and z = logc b. Notice that

b = ax = cz and d = aw = cy,

so a = c(z/x) and a = c(y/w), which gives c(z/x) = c(y/w). Thus we have
z

x
=

y

w
=⇒ xy = wz =⇒ (loga b) (logc d) = (loga d) (logc b)
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as desired.
This property is a bit difficult to spot in problems. Usually, this rule is used in order to swap arguments

in a product of logarithms for the purpose of cancellation. For instance, consider the following problem:

 Problem (Original). Simplify the following:
loge b · loga d · logd c · logb a · logc e

We can just trade arguments until each base has the same value as the argument. For instance, we can notice
that loge b · logc e = loge e · logc b = logc b. Then, we can repeat with logc b · logd c and so on. Eventually, this
all reduces to 1.

Theorem: Property of Logarithms 

Suppose that a, b, c ∈ R. Then,
loga b
loga c

= logc b

Proof. Property of LogarithmsLet x = loga b, y = loga c, and z = logc b. Notice that ay = c. Raising both
sides to the power of z gives ayz = cz. But since cz = b = ax, we have that ayz = ax. Taking logs base-a
gives

yz = x so y =
x

z
=⇒ loga b

loga c
= logc b

This powerful result can easily allow you to unify different-base logarithms through one singular base.
Considering which base to change everything to is an important step: while one substitution may end up in
everything reducing to simpler terms, changing to another base may result in an algebraic nightmare.

 Problem (AHSME). If a > 1, b > 1, and p =
logb(logb a)

logb a
, then find ap in simplest form.

 Solution. There's no doubt that p looks a bit ugly in its current state. We would like to hope
that there would be a way to reduce p in some way. Indeed, since the numerator and denominator share
the same base, we kill two birds with one stone by simplifying p and turning it into a logarithm in base-a to
allow for nice cancellation when finding ap. Namely, we can use the change of base property of logarithms
to see that

logb(logb a)
logb a

= loga(logb a) so ap = aloga b = b.

Theorem: Property of Logarithms 

Suppose that a, b ∈ R. Then,
loga b =

1

logb a

Proof. Property of LogarithmsLet x = loga b and y = logb a. Clearly, ax = b and by = a so

axy = (ax)y = by = a.

Taking logs base-a on both ends yields xy = 1 so
(loga b)(logb a) = 1 =⇒ loga b =

1

logb a
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This property introduces a nice, simple way to switch the base and the argument. In many cases, this
property is leveraged in order to extract logarithms from denominators or cancel like terms. Consider the
following example:

 Problem (2021 AMC 12B P9). What is the value of
log2 80
log40 2

− log2 160
log20 2

?

 Solution. Notice how convenient it would be if all of the logarithms had the same base. It turns
out, we are lucky in this scenario because the arguments of the non-base-2 logarithms are both 2, meaning
some inverting bases and arguments could help us out. Indeed, notice that

log2 80
log40 2

− log2 160
log20 2

=
log2 80

1
log2 40

− log2 160
1

log2 20

= log2 80 · log2 40− log2 160 · log2 20

= (log2 4 + log2 20)(log2 2 + log2 20)− (log2 8 + log2 20) log2 20

= (2 + log2 20)(1 + log2 20)− (3 + log2 20) log2 20

For simplicity sake, let x = log2 20, then, we have
(x+ 2)(x+ 1)− x(x+ 3) = x2 + 3x+ 2− (x2 + 3x) = 2

♦4 Advanced Tactics
♦4.0.1 What's Fair Game?

Note that there will never be solutions to log1 k, even for k = 1. A common misconception is to assume that
log1 1 has infinite solutions in R, but this isn't true because

log1 1 =
ln 1

ln 1
=

0

0
which is indeterminate.

Likewise, log0 k is also undefinitiond, and it is not true that log0 0 has infinitely many solutions in R for
a similar line of reasoning. definition f(x) = logn x. Then, f is undefinitiond for n < 0, for if it wasn't,
logarithms would have to be definitiond in C. There's another name for that, called complex logarithms.
Complex logarithms will actually yield solutions for equations like 1x = 2. But, for now, we must be real
lumberjacks.

If x > 0 in f(x) = logn x, then

logn −x = logn(−1 · x) = logn −1 + logn x =
ln−1

lnn
+ logn x =

iπ

lnn
+ logn x because eπi = −1

♦4.0.2 Undoing ex and logn x

An alternate -- but rather important -- definition of the logarithm is that is the inverse of the exponential
function when the base is nonnegative and not equal to 1. Namely, if f(x) = nx then f−1(x) = logn x for
n > 1 because

f(f−1(x)) = nlogn x = x and f−1(f(x)) = logn nx = x.
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x

y y = logn x (n > 1)

x

y y = logn x (n < 1)

♦4.0.3 Bounding the Logarithm

Observing the graph of f(x) = logn x for n > 1, a few handy tools arise. Firstly, we have that

0 < x < 1 =⇒ f(x) < 0 and x  1 =⇒ f(x)  0.

To prove the former, let p, q ∈ R+. WLOG, fix q > 1 > p > 0 and let f(x) = logp x. Consider f(x) = logp x,
then, pf(q) = q. Assume f(x) > 0 for 0 < x < 1, then, pf(q) < 1. But this is a contradiction because pf(q) = q
and q > 1, so f(x) < 0 for 0 < x < 1. For the ladder, suppose p, q are non-negative reals with q > p > 1.
Consider f(x) = logp x and the fact that pf(q) = q. Assume, f(x) < 0 for x  0, then, we have two cases.
Either f(q) = 0 or f(q) > 0. If f(q) = 0, then we have a contradiction because pf(q) = 1 and q > 1. If
f(q) > 0, we have another contradiction since pf(q) < 1 and q > 1, so f(x)  0 for x  0.

Now, peering at the graph of f(x) = logn x for n < 1, we attain some similar results. We have that

0 < x < 1 =⇒ f(x) > 0 and x  1 =⇒ f(x)  0.

Indeed, the proofs are very similar to the previous with converse logic; I challenge you to try them yourself.

Another nice result comes from the fact that logn x (with (n > 1)) is strictly monotonically increasing.
Namely, if p, q ∈ R+ then

p > q ⇐⇒ logn p > logn q

To prove this, it suffices to show that f is monotonically strictly increasing (which is the same as showing
f ′(x) is positive for x > 0) can see that if f(x) = lnx then f ′(x) = 1

x which is positive for all x > 0.1

The final result involving inequalities involves abusing the fact that logarithms are convex functions for
bases greater than 1 and convex for bases less than 1. Namely, if f(x) = logn x and n > 1, f ′′(x)  0 and if
f(x) = logn x and n < 1, f ′′(x)  0. Why is this important?

 Definition (Jensen's Inequality). Let f be a convex function on the interval [a, b]. It follows that

f


a1 + a2 + · · ·+ an

n


 f (a1) + f (a2) + · · ·+ f (an)

n

for all ai ∈ [a, b]. If f is concave, then the inequality flips.
This means that for n > 1 in logn x, the following inequality holds for each ai ∈ [a, b]:

logn

a1 + a2 + · · ·+ an

n


 logn (a1) + logn (a2) + · · ·+ logn (an)

n

Likewise, n < 1 in logn x, the following inequality holds for each ai ∈ [a, b]:

logn

a1 + a2 + · · ·+ an

n


 logn (a1) + logn (a2) + · · ·+ logn (an)

n
1If you aren't familiar with derivatives, you can disregard the proof for now. Intuitively the proof is leveraging the fact that

ln(x+ h) > ln(x) for x, h > 0 to show that the inequality holds for any positive m,n such that m > n
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 Problem (Use-case of Jensen's). Let a, b, c > 0. Prove that

aabbcc 

a+ b+ c

3

a+b+c

This problem can seem intimidating, especially since it asks you to prove the inequality. But fear not, for
this problem is quickly demolished by considering the function f(x) = x ln(x). Namely,

since f ′′(x) =
1

x
, f ′′(x)  0 ∀x  0 so, f is a convex function.

Now, we can make f work for us leveraging Jensen's inequality. Specifically,
a ln(a) + b ln(b) + c ln(c)

3



a+ b+ c

3


ln


a+ b+ c

3


.

With just a bit of algebra, we see that this is equivalent to

ln(aabbcc)  ln


a+ b+ c

3

 a+b+c
3


=⇒ aabbcc 


a+ b+ c

3

a+b+c

after raising e to the power of each side.

♦4.0.4 Cutting log Systems into Exponential Equations

A tactic you probably saw during the proofs of the logarithm properties is the ability to interpret logarithms
as exponential equations. Usually, putting logarithms in this form can make them more flexible to work
with. You need not seek out logarithmic properties for reduction, and instead, you can just use some stan-
dard algebra to reach a solution.

 Problem (2020 AIME II P3). The value of x that satisfies log2x 320 = log2x+3 32020 can be written as
m
n , where m and n are relatively prime positive integers. Find m+ n.

 Solution. Let n = log2x 320 = log2x+3 32020, then, we can see that

(2x)n = 320 and (2x+3)n = 32020.

If we expand the second equation, we arrive at
2xn · 8n = 32020

Since 2xn = 320, we can substitute this in to get
320 · 8n = 32020 =⇒ 8n = 32000 =⇒ 8

n
100 = 320 =⇒ 2

3n
100 = 320

Using the first equation, we can see that
2xn = 2

3n
100 =⇒ x =

3

100

So the answer is 100 + 3 = 103.

♦4.0.5 Addressing the Tingly Sense

Before we head on, you may not be quite satisfied with the solution to the last problem. Let's take one more
look:

 Problem (2020 AIME II P3). The value of x that satisfies log2x 320 = log2x+3 32020 can be written as
m
n , where m and n are relatively prime positive integers. Find m+ n.

You may have thought to yourself ``I wonder if we can work with the fact that logan bn = log ab...''
This may have been inspired by the fact that both the base and argument are risen to a power. This also
could've been inspired by the fact that the base and the argument are the same on the LHS and RHS. If
you felt/thought this, good! This is your intuition of logarithms speaking to you and it turns out that this
``tingly sense'' yields a very nice solution.

We first ask what is preventing us from just using the fact that logan bn = log ab. Indeed, it's because in
our problem, the power of the base in the LHS, (x) does not match the power of the argument (20). The
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same holds for the LHS. Let's explore a slightly adjusted version of the property we are trying to use that
matches our scenario more closely. Namely, we may ask what something like logax by reduces to (because in
an ideal world, these variables would be the values in the original problem). Since x, y are relatively positive
integers, there must be some rational number k for which y = kx. So, we can rewrite our logarithm as

logax bkx = k logax bx = k loga b.

Since k = y
x , we've now shown that

logax by =
y

x
loga b.

 Solution (Quicker). This problem is quickly obliterated by the fact that logax by = y
x loga b.

Namely, we transform the original equation into
20

x
=

2020

x+ 3
=⇒ x =

3

100
.

Then, the problem finishes the same as before.

♦4.0.6 Substituting Everything to Oblivion

There are some cases where it simply doesn't make sense to work with logarithms or exponents in a system
of equations. It is in these cases where making a small substitution or two could reduce a TON of algebraic
grunt work. It's the difference between writing an essay solution consisting of many carefully selected alge-
braic manipulations, or reducing your work to a few lines. Consider AIME problem #2 from 2023:

 Problem (2023 AIME I P2). Positive real numbers b ∕= 1 and n satisfy the equations
logb n = logb

√
n and b · logb n = logb(bn).

The value of n is j
k , where j and k are relatively prime positive integers. Find j + k.

Here, we are given a system of equations and asked to effectively solve for n. However, after a recall of
the logarithmic properties, it appears nothing will work nicely for us. As you will see, when there are no
quick tricks to pull out of the bag, It is far more worth your time to consider some substitutions that could
dramatically reduce the amount of work that goes into your solution.

 Solution (Take 1). Notice the second equation: b · logb n = logb(bn). It isn't difficult to see that

logb(bn) = logb n+ logb b = logb n+ 1.

Now, since
b · logb n = logb n+ 1

We can divide both sides by logb n to arrive at

b =
logb n
logb n

+
1

logb n
= 1 + logn b =⇒ logn b = b− 1

Letting the base of both sides be n, our equation reveals that
nb−1 = b.

Notice that since b = nb−1, we can see substitute nb−1 into the base of the first equation to get an equation
in b. Namely, 

logb n = logb
√
n =


lognb−1 n = lognb−1 n

1
2

With a bit of algebra, this equation reduces further:
1

b− 1
=

1

2b− 2
=

1

b− 1
=

1

4b2 − 8b+ 4
= 4b2 − 9b+ 5 = 0.

Now, the solutions to this quadratic are b = 1, 5
4 , and since b ∕= 1, that must mean b = 5

4 . Now, plugging this
into nb−1 = b and solving for n gives:

n
1
4 =

5

4
=⇒ n =

625

256
.
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Since this fraction is in simplest terms, the numerator and denominator are relatively prime, so the answer
is 625 + 256 = 881.

 Solution (Take 2). Let x = logb n and the problem is destroyed. From the original equations,
we have √

x =
1

2
x and bx = 1 + x

With a tiny bit of algebra, x = 4 and b = 5
4 . So, we have

n = bx =
625

256

which finishes exactly the same as before.

♦4.0.7 Counting Digits

If d(x) is a function that gives you the number of digits in x, one option is to definition d(x) = ⌊log(x)⌋. To
see why this is the case, suppose we have a bunch of integers a0, a1, a2, . . . , an−1, an where each ai satisfies
0  ai  9 if i ∕= n and 0 < ai  9 if i = n. Then,

n

i=0

10iai denotes a number where each ai is the i-th digit.

In this case, you should be able to see that there are n digits, so we would like to show that
log


n

i=0

10iai


= n.

Notice that
n

i=0

10iai = 10n


n

i=0


1

10

i

ai


=⇒


log


n

i=0

10iai



=


log


10n


n

i=0


1

10

i

ai


=


log 10n + log


n

i=0


1

10

i

ai


=


n+ log


n

i=0


1

10

i

ai


.

Now, it suffices to show that log
n

i=0


1
10

i
ai


< 1. Expanding

n
i=0


1
10

i
ai, we get

a0 +
a1
10

+
a2
102

+ · · ·+ an−1

10n−1
+

an
10n

.

Taking each ai maximal (meaning each ai = 9) we have

9 + 9


1

10

1

+ 9


1

10

2

+ · · ·+ 9


1

10

n−1

+ 9


1

10

n

Which is a geometric sequence with starting number 9 and common ratio 1
10 so the closed form of the sum is

a(1− rn)

1− r
=

9(1− 1
10n )

1− 1
10

= 10− 101−n

Since 101−n > 0 for any n, it follows that 10− 101−n < 10 Taking logs on both sides reveals that

log(10− 101−n) < 1 =⇒ log


n

i=0


1

10

i

ai


< 1

as desired.
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♦5 Problems
 Problem (AMC12). Let S be the set of ordered triples (x, y, z) of real numbers for which

log10(x+ y) = z and log10(x2 + y2) = z + 1.

There are real numbers a and b such that for all ordered triples (x, y, z) in S, we have x3+y3 = a·103z+b·102z.
What is the value of a+ b?

 Problem (AMC12). Let m > 1 and n > 1 be integers. Suppose that the product of the solutions for
x of the equation

8 (logn x) (logm x)− 7 logn x− 6 logm x− 2013 = 0

is the smallest possible integer. What is m+ n ?

 Problem (AMC12). Let a ≥ b > 1. What is the largest possible value of loga
a

b
+ logb

b

a
?

 Problem (AIME). Let x, y, and z all exceed 1 and let w be a positive number such that logx w = 24,
logy w = 40, and logxyz w = 12. Find logz w.

 Problem. The sum of the base-10 logarithms of the divisors of 10n is 792. What is n?
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